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SUPERPOROSITY IN A CLASS OF NON-NORMABLE SPACES

INTRODUCTION

The concept of porous set was introduced by Dolzenko in [D]. Since then it
has been thoroughly investigated and diversely generalized (see [Zal] or [Re] for a
survey). It is possible to define several notions concerning porosity also in metric
spaces (see [Zal],[Re]). It is known that in Banach spaces the ideal of meager sets
is strictly wider than that of the o-porous sets ([Zal]). It is true also in closed
non-locally compact convex subsets of a separable Banach space ([AB]). Recently
it has been established in dense in itself completely metrizable spaces as well (cf.
[Za3]).

The primary goal of the research presented in this paper is in the line of the
above results, i.e. to compare o-porous and meager sets, respectively in some non-
normable spaces. Such an attempt was made in [TZs| where the space s of all real
sequences endowed with the Fréchet metric

n |an |
pr({an}tn, {ba}n) 22 Ty Vhere {antn: {bn} € s

was scrutinized in this respect. This space is non-normable ([KG], Exercise 276)
and it was shown in [TZs] e.g. that the set {{an}n € 5;)_, ®(a,) converges} is o-
superporous in s for a residual family of functions ® in the space of all real functions
furnished with the uniform topology.

It is the purpose of this paper to carry on these investigations generalizing results
of [TZs] for the space M of all measurable functions on an infinite o-finite measure
space (X, S, 1) endowed with the (metrizable) topology of convergence in measure
on sets of finite measure (see [G]). We will show that results quite analogous to
those of exposed in [TZs] for s hold in this generality as well. For instance, the set
A(®) = {f € M; [y |® o fldu* < 400} is o-superporous in M for a broad class
of functions ® : R — R, where p* is the outer measure induced by p and || ; hdp*
stands for the p*-upper integral of the function h : X — R (see [F], Section 2.4).

Further we show that A(xg\as) is o-superporous in M for every o-very porous
set M C R (xgr\a is the characteristic function of R\ M) and that A(xg\ar) is
meager in M if M is meager at some point of R. In particular, A(xg\as) is meager
in (s, pr) if and only if M is meager at some point of R.

This could provide a method for relating meager non-o-porous subsets of R to
meager non-o-porous subsets of M (resp. s) if the porosity of A(xg\as) in M (resp.
s) could be characterized in terms of M C R.

It is worth noticing here that a more familiar metrization of M by the metric

m(f,g) = inf{e > 0;u({z € X;|f(z) — g(@)| > e}) <&} (f,g € M)
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which coincides with the topology of convergence in measure on X (cf.[F], Section
2.3.8), yields a setting where our considerations are not feasible even for continuous
®’s. This question was studied in [Zs1].

PRELIMINARIES

In the sequel (X,S,u) will be an infinite o-finite measure space and p* the
outer measure induced by p. Without loss of generality we may suppose that
X = U2, Xy, where {X,,}22, is a sequence of pairwise disjoint, S-measurable
sets such that 2 < pu(X,,) < +oo for each n € N.

Denote by M (resp. M,,) the set of all S-measurable functions that are finite
almost everywhere (abbr. a.e.) on X (on X,). We will identify members of M
provided they equal a.e. on X. If the sequence fr € M (k € N) converges in
measure to f € M, write fr > f.

Denote by F,, the space of all functions ® : R — R such that ® o f € M for
all f € M. It is known that F,,, contains the class of Borel-measurable functions.
Observe that F,, is a closed subspace of the complete metric space (F,d), where
F =R" and

d(®,0) = min{l,igﬂg [(t) — ()|} (@,¥ e F).

Indeed, if a sequence ®,, € F,,, (n € N) d-converges to ® € F then &, 0 f € M
converges pointwise to ® o f (for all f € M), thus ® o f € M and consequently
® € F,,. It follows that (F,,,d) is a complete metric space.

For ® € F and p € N define

A®)={f¢€ M;/X* |® o fldu* < 400} and

A,(®) = {f € M; /X ® o fldu” < p},

where f; fdu* is the upper integral of f with respect to pu* (see [F], Section 2.4).
For f,g € M and n € N define

_ [ -9l
pn(f,g)—/Xn 1+|fﬁg‘du

p(fr9) =" mpn(ﬁ 9)-

n=1

For 7,5 € N and M C R denote

Aiy(M) = {f € My (f (M) N X;) > “(fi)h
Aij(M) = {flx,;; f € Ai (M)} and A; o(M) = {f € My p* (1 (M)) = p(X;)}

It is not hard to see that p (resp. p,) is a metric on M (resp. M,,). It can be
shown similarly as for (s, pr) that (M, p) is non-normable (see [Zs2]).

Convergence in measure implies p-convergence and the converse holds if and only
if the underlying measure space is finite. More precisely we have:
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Lemma 1. Let fi, f € M (k € N). The following are equivalent:
G) fr = f;

(i) fx L f on every S-measurable set of finite measure;

(i) fulx, 2= flx, for alln € N.

Proof. For (i)<(ii) see [G], Theorem 3. The equivalence (i)«<(iii) follows easily
from [K] (Theorem 14, p.122). O

Remark 1. Observe that (M,,, p,) is a complete metric space for each n € N and the
pn-convergence of sequences from M, coincides with their convergence in measure
on X, ([Ha], Problem 42(4)). Further the equivalence (i)<(iii) in the previous
lemma actually yields that (M, p) and the Tychonoff product II,,(M,, p,) are
homeomorphic.

Lemma 2. (cf.[G]) (M, p) is a complete metric space.

Denote by By(y,r) the open ball about y € Y with radius r > 0 in the metric
space (Y,d). By B(z,r) we will denote the interval (x —r, 2 +r), where x € R. For
ECY,y€eY and r > 0 define

Y(y,r, E) = sup{r’ > 0;3y’ € Y Ba(y',r") C Ba(y,r)\ E}.

We say that E is porous (very porous) at y if

E E
lim sup 19,1 E) > 0 (liminf 2y, E) >

0).

r—0+ r r—0+ T
Further F is said to be superporous at y € Y (see [Zal],[Za2]), if E U F is porous
at y whenever F' C Y is porous at y.

A set E C Y is said to be globally very porous if there exist constants 0 < ag < 1
and 7o > 0 such that y(y,r, E) > agr for every y € E and 0 < r < r¢ ([Zal]).

We say that E is superporous (very porous) if it is superporous (very porous) at
each of its points, further F is g-superporous (o-very porous) if it is a countable
union of superporous (very porous) sets. Superporosity was defined in [Za2] in
connection with the Z-density topology of Wilczynski and others (cf.[W]).

Note that superporosity implies very porosity as observed in [Za2] (see [Re],
Corollary 8.15 as well) and o-superporosity is equivalent to o-very porosity which
is further equivalent to o-globally very porosity ([Re], Corollary 8.17).

We will denote by cardY and P(Y) the cardinality and the power set, respec-
tively of the set Y, further ¢ will stand for the power of the continuum. Denote by
|7] the length of the interval I C R.

MAIN RESULTS

Lemma 3. Let {I;;q € N} be an enumeration of open intervals with rational
endpoints. Let ®pq = pxr, for p,q € N. Then Ap(®,,) is superporous in (M, p) for
every p,q € N.

Proof. Choose p,q € N and denote by t, the midpoint of I,. Let f € A,(®pq).
Suppose that F' C M is an arbitrary set porous at f. Then there exist sequences



4 SUPERPOROSITY IN A CLASS OF NON-NORMABLE SPACES

Tn,rh >0 (n € N) and o > 0 such that ar, < r), <r, < 27", further we get an
fn € M such that

(1) Bp(fTLvT:’L) - Bp(f7 Tn) \F

Define p, = min{k € N;27% < ¢/} +1 and ¢, = 27P»*! for all n € N. Then we

have
/

r

2 > e, > 2,

@ Ho>e 2
Denote Eny = Xy, N fo (t q %|Iq|v tq+ %|Iq|)) and Eynp = X, \ By and define

In = InXx\X,, T tqXE.. T (tq + %|Iq‘)XEn1 € M. It is clear that

1
(3) |fn(x) - gn(x)l Z §|Iq‘ for all z € X;Dn

Since p(fn,gn) = QP"M%XPH prn 1%’}:32L|du then by the definition of &,, X,

and (3), respectively we get
€
(4) P(frs gn) < £7

2
1] €n
4, nyIn > Yy
(47) p(frs gn) SEIL 2
%p(‘fn,gn) and pick an arbitrary h,, € B,(gn,d,). Define
46,
— 40,

Observe that D, is well-defined, since by ( ) Gy = el w < g
Then we have

Put 6, =

D, ={z € X, ; |hn(x) — gn(z)| < }and Dy = X, \ Di,.

1P — gl
On > p(hn, gn) > / dp >
i 9n) 2 %) Sy T T — g0

Z En / @dﬂ _ 25nM(Dn())’
2(Xp,) Jp,y En 1(Xp,)

thus 1(Dno) < 2p(X,,) hence pu(D,,) > 2p(X,,) > 1.

In view of (4) we get |hn(x) — gn(x)] < sn4—625n < %|1,| for every x € Dy, so
hn(Dy) C (tq— 2|14, tg+ 2|1,]) (see the definition of g,). Then [y [®pq0hy|du* >
f;n |(I)pq o hn‘d/ﬁ > pu(Dyp) > p, so
(5) hn € M\ Ap(Ppg)-

Using (4) we get €, — p(fn,9n) > 5 > - S_LI‘I‘ i > On, therefore B, (gn,dn) C

B,(fn,en) C By(fn,r},). Then in virtue of (5) and (1) there holds

By(gns0n) € Bp(fu,70) \ Ap(Ppg) C Bo(f,mn) \ (F U Ap(Ppy))-
From (4’) and (2) we get

|14 €n gl a7, | oa
7n7FUA >5n7 72 l> 7 In
thus lim sup V(f’T’FUTA"(q)”)) > (Sflqllql)Q% > 0, which proves the porosity of F'U

r—0+

Ap(Ppg) at f. O
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Theorem 1. Let ® € F be a function for which there exists to € RU {£oo} such
that

(6) liminf [®(¢)] > 0.
t—to

Then A(®) is o-superporous in (M, p).
Proof. In view of (6) there exists 8 > 0 and a bounded open interval I such that

(7) |®(t)] > B for all t € I.

Let {Ji; k € N} be a partition of I consisting of open intervals. Choose an f € A(®).
Then by (7) we have

B3 u(f~ () = BulF (D) < /X B o fldu* < p

keN

for some p € N. Thus pu(f~*(Jg)) < 1 for some k € N and hence u(f~*(1,)) <1
for some open interval I, C Jj with rational endpoints. Consequently,

/X 1®,, 0 fldu* = pu(f~(1,)) < p,

so f € Ap(®pg), whence A(®) C U, ,en Ap(Ppg), which concludes the proof by
Lemma 3.
O

As the following results show, there are also functions ®, not necessarily satis-
fying (6), for which A(®) is still o-superporous (cf. Theorem 2):

Lemma 4. Let M C R be a globally very porous set. Then AU(M) 18 SUPerpoTrous
in (M, p) for eachi,j € N.

Proof. According to the assumption on M there exist 0 < ap; < 1 and r¢ > 0 such
that

(8) y(z, 7, M) > apyr forall x € MU(R\ M) and all 0 < 7 < 7.

Choose f € /LJ(M) and a set F' C M which is porous at f. Then there exist
a > 0, sequences r,,r!, > 0 and f, € M such that r, \, 0,ar, < r,, <r, <
92—t . 3ro and
1479
(9) B(fn,m) € B(f,ma) \ F.

It is not hard to find b, € R (1 < k < m,,, where m,, € N) and a partition
{Dnr;1 <k < my} of X; such that for gno = frxx\x, + > bk XD, € M there
holds

!/
TTL

(10) pfs o) < 2.
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We can actually choose b, € M U (R\ M) for every 1 < k < my,.
Put n, = GEZ;;, . Then 7, < rg, so it follows from (8) that for each 1 < k < m,,

there exists 0/, € R and 7, > 0 such that

(11) apmn < rok < Mn and B, k) C B(bnk, mn) \ M.

Define gn = gnoxx\x; + S bl XD, € M. Then by (11) we have

1 = /
Pl9n0,9n) = =~ bnk: n dlu/ bnk n :U/ <
1 o r 7"’
n Dn = l)
< Sy ;u( W= <
thus in view of (10)
/
(12) P(frs gn) < p(frs gno) + p(gnos gn) < ?n
We have 0 < apr < 1 < 3j, thus % > aMT . Then putting 6, “g;n:b we get by
(12) that 7}, — p(fn, gn) = 2 > 0y, sO
(13) Bp(gna 611) - Bp(fnaril)'
Choose h € A; j(M) arbitrarily. According to (11) we have
1 * |h — gnl
oz gt [ ey
20u(Xi) Jr-1(ynx, 1+ | — gal
min  r,x
1 1 X; n
> — ’u*(hfl(M) ﬂX,L) 1<k<mn i . p’( ' ) . am)
2 u(X;) 1+ 1<I]£11n Tk 2m(Xi) j 14+ aynn
1 amMMn
205 14, o

It means by (13) that B,(gn,0n) C By(fu,7,) \ Aij(M). Then in virtue of (9)
we get B,(gn,0n) C B,(f,mn) \ (F U A, ;(M)). Consequently

V(o F U A (M) 2 6, > T,
J

which justifies the porosity of F'U AU(M) at f. O
Theorem 2. Let M be a o-very porous set. Then A(xm\nr) is o-superporous in

(M, p).

Proof. We may already suppose that M = U:i1 My, where My, is globally very
porous and apg, < 1 for all kK € N.
Choose f € A(xr\am)- Then we have
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o0 = u(X) - / xar o fldit = p(X) — (U R\ M)) <

< Wi (f <O (M) N XG),
i,keN
thus p*(f~1(My) N X;) > 0 for some i,k € N. It suffices now to pick j € N such
that p*(f~1(My) N X;) > “ Xi) then clearly f € A; j(My,), consequently

Alxr\m) C U A; j(My),
i,j,kEN

which concludes the proof by Lemma 4. [

Now we turn to characterizing the meagerness of A(xg\as) in (M, p) in terms of
properties of M. We will need the following
Lemma 5. If M is meager at some point of R, then A; ;(M) is meager at some
point of (M, p;) for alli,j € N.
Proof. In the sequel we will use that the topology induced by p; on M, is equivalent
with the topology of convergence in measure on X, i.e. with the topology induced
by the metric m; = m|a, xm; (see [Hal, Problem 42(4)).

Suppose that there exists an interval U = B(tg,r) (to € R, > 0) such that
UNM = ;. My for some nowhere dense sets My, C R (k € N). Without loss of

generality we may assume that My C My, for all k € N. Let fo = tp on X; and
put V = By, (fo,7).

We will show that V' N A; j(Mj) is nowhere dense in (M;, m;): take an open ball
B, (f,e) in M;. We may already suppose that f € V and f equals a simple func-
tion Z;n:1 bsxp, where by,...,b, € U and Dq,...,D,, is a measurable partition
of Xz

Then the nowhere density of M}, in R yields some b, € R and 0 < gg < @
such that

(14) B(b,e0) C B(bs,e) \ My, for any 1 < s < m.
Choose g € By, (f1,€0) where fi =Y " b.xp, then by (14)
97 (M) € {z € Xi;|fr(z) - g(x)| = €0}
Therefore p*(g~1(My)) < &g < @, so g ¢ A; j(My). On the other hand f; €
By, (f,€); thus,
@ # Bml(fv 5) N Bmi(fl,i‘fo) C B’ﬂh(f? 5) \ A’L,j(Mk‘)v
which justifies the nowhere density of V' N A; ;(Mj) in M,.

Finally, denote Vy = By, (fo,70) where 7o = min{r, %} Pick h € A; ;(M) N V.
Then A= ' (M\U) C {z € Xy;|h(x) — fo(z)| = ro}, so p* (R (M\U)) <o < 5 <
“()J( 1 Furthermore in view of the regularity of ;* we get (cf. [F], Section 2.1.5(1))

1(X;)
J

< (M) < (M A D) 4+t (M) <

: *0p—1 N(XZ
< [lim g7 (™ (My)) + 5
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hence hrn pr(h=1(My)) > %)](), so h € A; i (My) N Vo C A;2;(My) NV for some
keN. Thcreforc .
Ay (M)NVy € | Aig;(My) NV
k=1
which means that A; ;(M) is meager at f in M,.
Theorem 3. If M is meager at some point of R then A(xgr\a) is meager in (M, p).

Proof. Let tg € R and r > 0 be such that B(tg,r) N M is meager in R. Let
Vi = By, (fo,70) Where fo =ty on X and 0 < ro = min{r, 1}. Then by Lemma 5
A; 2(M) NV, is meager in (M, p;) for all i € N.

Choose f € A(xr\am)- Then p*(f~'(R\ M)) < +oo and by the regularity of
w* there exists a p*-hull B of f~}(R\ M) (see [F], Section 2.1.4). Consequently,
W(BAX0) = it (7 R\ M) 0 X0) = ot (X (X, 1 72 (M)); thas,

+oo > p*(fTHR\ M) Zu BNXy) =Y p (X \ (Xin fH(M)).
i=1
Then for all i > m (m € N) we have

w(X;)
2

> 1> (X0 \ (Xi N f7HM))) = pu(X) = (X 0 f7H (M),

hence f|x, € A;2(M) for all ¢ > m. Accordingly,

A(xr\m) C U P,, where P, = 1" ' M; x TI2, A, o(M) for each m € N.

m=1

It suffices now to show by Remark 1 that P,, is meager in P = 1132, M, for every
m € N: Let U =1I7_, U; x II5° ; M; be any basic open set of the product topology
on P such that n > m. Denote by V the open set II}",U; x V;, 1 x 1I7° s M; C P.
Then V. C Uand VNP, C I U; x (Vg1 NApp1,2(M)) XTI52, 5 Aj o(M), which
is meager in P. It means by Theorem 1.7. in [HMC] that P,, is meager in P. [

Corollary. A(xr\a) is meager in (s, pr) if and only if M is meager at some point
of R.

Proof. The sufficiency follows from the previous theorem by putting X = N, S =
P(N) and the counting measure on N for pu.

Conversely, suppose that M is non-meager everywhere in R. Then M with the
relative topology is a dense Baire subspace of R. Then the product E = MY is
a Baire space which is clearly dense in s ([HMC], Lemma 5.6.). Therefore E is
non-meager in s and hence A(xg\a) D £ is non-meager in s. [

Remark 2. In connection with the Corollary a question arises if a similar charac-
terization of A(xg\as) is possible also in M. Mimicking the above proof and using
Remark 1 it would be sufficient to prove that non-meagerness of M everywhere in
R implies non-meagerness of A; o everywhere in M; for each ¢ € N, further that
M, is separable for each ¢ € N. This last condition is needed for the theorem on
product of Baire spaces ([HMC], Lemma 5.6.), thus we may consider the question
only for separable measure spaces (X, S, u) (see [Hal, §41).
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It is not hard to show that this is really the case if each X; is a finite disjoint
sum of atoms, however in general the answer is not known to me.

Remark 3. Another question here arises in connection with finding necessary con-
ditions for o-porosity of A(xgr\ar) in M (or at least in s). If we want to use some
argument similar to that of in the Corollary, we would need some “porosity-Baire”
product theorem as the mentioned result of Oxtoby ([O1],[HMC]). This ultimately
breaks down to proving a porosity version of the well-known Kuratowski-Ulam the-
orem on sections of nowhere dense subsets of the product space ([02], Theorem
15.1). More precisely, the questions are as follows:

(i) If X and Y are separable metric spaces and E is a porous subset of X x Y
with (say) the box metric, then are the a-sections E, of E porous in Y except for
a o-porous set in X7

(ii) Call a metric space Z p-Baire if every nonempty open subset of Z is non-o-
porous. Is the property of being separably p-Baire (countably) productive?

The preceding theorems provide sufficient background for investigating the class
U={d e F; A(P) is o-superporous in (M, p)}.

Theorem 4. We have

(i) cardU N Fy,) = cardd = 2°¢
(i) card(F\U) = 2° for (s, pr).

Proof. (i) Every subset of the Cantor’s ternary set C' is very porous therefore
in view of Theorem 2 xp\p € U N Fp, for every B C C, further xp\p # Xr\ £’
provided E # E’. Consequently card(U N F,) > cardP(C) = 2¢. Further clearly
cardU < cardF < card(RR) = 2¢.

(ii) If we restrict ourselves to (s, pr) only, then xg ¢ U for each E C C since
A(xge) = s \ A(xr\g) and (s, pr) is a nonmeager space by Lemma 2. Thus again
2¢ = cardP(C) < card(F\U) < cardF <2¢. O

Further we have
Theorem 5. U is residual in F.
Proof. See [TZs], Lemma 2 and our Theorem 1. O

Remark 4. It is worth noticing that if we restrict our investigations onto F,, only,
then similar results hold. Actually, Lemma 3-4 and Theorem 1-2 hold without
change, we need only to replace p* by p and the upper integral by integral, respec-
tively in the proofs.

We can also prove the analogue of Téth’s Theorem (Theorem 5) for F,,:

Theorem 5°. U N F,, is residual in (Fp,d).

Proof. See Lemma 2 in [TZs]. The only difference is in proving the density of
Uy = {® € F,; @ satisfies (6) for some tg € R} in (F,,,d), more precisely in
proving that ¥ = ®xu + Sxm\m € Fim, where & € Fpe > 0 and M = {t €
R; either ¢ ¢ (0,1) or t € (0,1) and |®(t)| > $}.
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To show this pick f € M, c € R arbitrarily and observe that

(o 1) (o)) =

(@ o f) (e, +00)),if ¢ > £
(@0 f)~ e, +00) U (f7H(0, 1)) N (o f)~ (=5, D)),

€
if c< =
10_4

thus Vo fe M. O
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